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Abstract

By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly
enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely
samples the information necessary to form an image. Conventional imaging techniques partially overcome this
limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of
an observation, which enables VLBI networks to accumulate information as Earth rotates and changes the
projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly
violated for submillimeter observations of the Galactic center supermassive black hole, SagittariusA* (SgrA*),
which has a gravitational timescale of only~20 s and exhibits intrahour variability. To address this challenge, we
develop several techniques to reconstruct dynamical images (“movies”) from interferometric data. Our techniques
are applicable to both single-epoch and multiepoch variability studies, and they are suitable for exploring many
different physical processes including flaring regions, stable images with small time-dependent perturbations,
steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate
time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using
standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of
simulated black hole systems and 7 mm Very Long Baseline Array observations of M87, and we show that
dynamical imaging is feasible for Event Horizon Telescope observations of SgrA*.

Key words: accretion, accretion disks – black hole physics – Galaxy: center – techniques: high angular resolution –

techniques: interferometric

1. Introduction

Very long baseline interferometry (VLBI) provides excep-
tional angular resolution but only sparsely samples the Fourier
components of an image. A powerful technique to enhance
interferometric imaging utilizes Earth’s rotation—as Earth
rotates, each baseline connecting an antenna pair tracks
through, and samples, a range of image Fourier components
(see, e.g., Ryle 1962; Kellermann & Moran 2001; Thompson
et al. 2017). In its conventional implementation, Earth-rotation
synthesis imaging assumes that the source being imaged is
static over the observing duration (typically ∼hours). This
assumption is reasonable for nearly all astrophysical sources of
interest, although a few sources have shown detectable
structural changes within a single observation (e.g., Reid
et al. 2014), most commonly through rapid swings of
polarization angle (e.g., Gabuzda et al. 2000).

One notable case for which the static-source assumption is
likely to fail is the Galactic center supermassive black hole,
SagittariusA* (SgrA*). Because SgrA* has a mass of appr-
oximately » ´ M M4 106 (Ghez et al. 2008; Gillessen et al.
2009), its gravitational timescale is only »GM c 20 s3 and its
innermost stable circular prograde orbits have periods of only
4–30 minutes, depending on the black hole spin (Bardeen
et al. 1972). In terms of observed variability, SgrA* regularly
flares with ∼hour timescales (e.g., Marrone et al. 2008;
Yusef-Zadeh et al. 2009; Brinkerink et al. 2015), and its
polarization shows intense variations on similar timescales

(e.g., Marrone et al. 2006; Eckart et al. 2006; Zamaninasab
et al. 2010; Johnson et al. 2015a).
Until recently, limitations from optical depth and interstellar

scattering have prevented studies of rapid structural variability
of SgrA* using VLBI (e.g., Bower et al. 2006; Lu et al. 2011).
However, the advent of 1.3 mm VLBI with the Event Horizon
Telescope (EHT) will soon permit imaging SgrA* on spatial
scales for which intrinsic variability may be significant
(Doeleman et al. 2009a). Pronounced variability with accom-
panying structural change has already been seen in the
polarization of SgrA* with the EHT (Johnson et al. 2015a),
although the total-intensity structure of SgrA* has remained
comparatively stable (Doeleman et al. 2008; Fish et al. 2011,
2016b). In addition to these observations and the short
characteristic timescales of SgrA*, numerical simulations
suggest that conventional VLBI imaging techniques will be
inapplicable for EHT observations of SgrA* (see Figure 1 and,
e.g., Broderick & Loeb 2006; Doeleman et al. 2009a; Dexter
et al. 2010; Johnson et al. 2015b; Kim et al. 2016; Lu et al.
2016; Medeiros et al. 2016; Gold et al. 2017; Medeiros et al.
2017; Roelofs et al. 2017).
Nevertheless, interferometry provides capabilities to study

rapidly varying structures. For example, using simulated
observations of a “hot spot” orbiting SgrA* (Broderick & Loeb
2005, 2006), Doeleman et al. (2009b) and Fish et al. (2009)
demonstrated that robust VLBI observables can sensitively
detect periodicities associated with these hot spots. More
generally, Johnson et al. (2014) showed that polarimetric VLBI
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enables microarcsecond astrometry of compact flaring structures,
even for faint, nonperiodic flares. Even conventional Earth-
rotation synthesis utilizes time-variable Fourier sampling to
enhance imaging, and Johnson et al. (2015b) argued that
intrinsic variability of a source can be exploited in the same way
if the source variability can be modeled (see, e.g., Sault et al.
1997). As Figure 1 shows, while intrinsic variability of SgrA*

may readily break the static-source assumption of conventional
imaging, it also provides a rich source of information about the
intrinsic variability.

In this paper, we develop techniques to reconstruct
dynamical images (i.e., movies) from interferometric data. By
accommodating intrinsic variability in the imaging procedure,
we can study the dynamical activity of a source while avoiding
spurious image features from the static-source assumption of
conventional imaging algorithms. In a related approach, Lu
et al. (2016) have recently developed a prescription for scaling,
averaging, and smoothing interferometric visibilities; the
processed visibilities can then be imaged using standard VLBI
imaging techniques.6 They show that the resulting images are
good approximations of the time-averaged image, especially
when data from multiple observing epochs can be combined.
Our focus is instead on reconstructing dynamical images of the
time-variable source, while obtaining reliable approximations
of the time-averaged image as a by-product.

Our work is a generalization of the standard regularized
minimization approach to VLBI imaging, which includes
approaches such as the maximum entropy method (MEM; see,
e.g., Narayan & Nityananda 1986) and many other regulariza-
tion functions. This approach, while not a strictly probabilistic
model, can be motivated through a Bayesian framework
wherein the minimization corresponds to maximizing the log

posterior probability of a reconstructed image. In a separate
paper, we explore an alternative approach to dynamical
imaging via a modified Hidden Markov Model with a
multivariate Gaussian image prior, and we derive closed-form
expressions for both the maximum a posteriori image and its
uncertainties (Bouman et al. 2017).
We begin, in Section 2, by reviewing the standard frame-

work and procedure for VLBI imaging through regularized
minimization, and we then generalize this framework to
accommodate dynamical imaging. Next, in Section 3, we
develop three regularizers that can be used for dynamical
imaging for a variety of scenarios. In Section 4, we discuss
using dynamical imaging for temporal interpolation. In
Section 5, we show example results using simulated data and
Very Long Baseline Array (VLBA) observations of M87, and
in Section 6 we summarize our main results and conclusions.

2. Fundamentals of Interferometric Imaging

2.1. Interferometric Visibilities

Each baseline joining two sites in an interferometer samples
complex visibilities. By the van Cittert–Zernike theorem, these
visibilities, ( )uV , are related to the brightness distribution on
the sky ( )xI via a Fourier transform (Thompson et al. 2017):

ò= p-( ) ( ) ( )·u x xV d I e , 1u xi2 2

where x is an angular coordinate on the sky, in radians, and
º { }u u v, is the dimensionless baseline vector, in wave-

lengths, projected orthogonal to the line of sight.
Interferometry uses a set of measured visibilities { }Vi to

estimate the unknown sky image ( )xI , as we will discuss in
Section 2.2. However, when the image is also a function of
time, the sampled visibilities at a particular time only represent
the corresponding, instantaneous image. In this case, a series of
images can be reconstructed if each utilizes only its
simultaneous “snapshot” visibility coverage. With Ns partici-
pating sites with mutual visibility of the source, there are at
most -( )N N 1 2s s visibilities in the snapshot coverage,
severely limiting the imaging capabilities when Ns is small
(see, e.g., Figure 2).

2.2. Interferometric Imaging via Regularized Minimization

We will now review the standard prescription for VLBI
imaging via regularized minimization. This prescription
encompasses many common approaches to VLBI imaging,
such as MEM (see, e.g., Frieden 1972; Cornwell & Evans
1985; Narayan & Nityananda 1986) and many variants (see,
e.g., Thiébaut et al. 2013; Honma et al. 2014; Lu et al. 2014;
Bouman et al. 2016; Chael et al. 2016; Fish et al. 2016a;
Akiyama et al. 2017a, 2017b), but does not describe iterative
deconvolution approaches such as CLEAN (Högbom 1974).
The flexibility of the regularized minimization framework
makes it ideal for sparse and heterogeneous arrays, such as the
EHT, and also allows extensions to include, e.g., mitigating
the image distortions caused by interstellar scattering
(Johnson 2016).
To simplify our presentation, we will represent reconstructed

images I as square ´N N arrays, giving flux density per pixel.
We denote a sequence of images by { }Ij , where j indexes the
time for Nt different frames. In the following sections, we will
generally treat each image as a vector of length N2 rather than

Figure 1. VLBI phase measurement, the closure phase, over time for the
SPT-LMT-ALMA triplet of EHT antennas using mock observations of a time-
variable general relativistic magnetohydrodynamic (GRMHD) simulation of
SgrA* (Shiokawa 2013). The phases in blue show the array response to a
single static frame in the GRMHD movie. The mild variations for this case
reflect Earth’s rotation and show the modest additional information available to
Earth-rotation synthesis. The phases in green trace the array response to the full
simulation, showing that the phase variations are dominated by intrinsic
variability of the source. See Roelofs et al. (2017) for additional examples and
discussion.

6 This prescription is motivated by linearity of the Fourier transform: complex
visibilities of the time-averaged image are equal to time-averaged visibilities of
a variable image. See Shiokawa et al. (2017) for generalized time-domain
filtering of images.
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an ´N N matrix. Linear operators such as the Fourier
transform relating images and interferometric visibilities,
blurring via convolution, and discrete gradients are linear and
can therefore be represented as ´N N2 2 matrix operators that
act on these 1D image vectors (of course, elements of these
operators depend on the 2D nature of the images).

Approaches such as MEM estimate the unknown source
image I by numerically minimizing an objective function, ( )IJ .
J contains terms that express whether or not an image is
consistent with the input VLBI data (a chi-squared term) and
also contains terms that favor certain image attributes (such as
smoothness or positivity through an entropy or other
regularization term). The objective function then takes the form

c a= -( ) ( ) ( )I d IJ S, . 22
S

In this expression, ( )IS denotes the regularization function for
the imaging (e.g., º -å( ) ( )IS I Ilnℓ m ℓ m ℓ m, , , is commonly

used for MEM), and c2 represents a chi-squared for whatever
data products d are used as part of the imaging. aS is a
“hyperparameter” that controls the relative weighting of the

entropy and data terms. The hyperparameter can be adjusted
manually or automatically to yield the expected c2 for a
satisfactory image (e.g., Cornwell & Evans 1985), or it can be
estimated via cross-validation, wherein the data are divided into
training and testing sets and the hyperparameters are chosen so
that images reconstructed using the training set are compatible
with the measurements and errors of the testing set (see
Akiyama et al. 2017b). From a probabilistic perspective, the c2

term in Equation (2) corresponds to a log-likehood, while the
regularization term corresponds to a log prior distribution of the
reconstructed image.

2.3. General Prescription for Dynamical Imaging

We now extend this framework and notation to dynamical
imaging. In this case, the imaging problem is to simultaneously
reconstruct Nt different frames { }Ij . Each frame has an
associated entropy, and we will average the frame entropies
to give a single representative value. Also, the data chi-squared
term must be updated so that each data point is compared with
its simultaneous reconstructed image. Finally, we will add a
new term  ({ })Ix j with an associated hyperparameter ax to
regularize the dynamical images (we use x to label different
choices for this term). This additional term can enforce
expected properties such as continuity from frame to frame, a
stable average image, or stable motion. The objective function
for dynamical imaging then takes the form

åc a a= - +
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥({ } ) ( ) ({ }) ( )I d I IJ

N
S,

1
. 3j

j

N

j x x j
2

S
t 1

t

Note that multiple dynamical regularizers can easily be
combined in this framework, and additional regularization
terms could be added (e.g., to mitigate interstellar scattering;
Johnson 2016). The main purpose of this paper is to develop
effective and efficient choices for the dynamical regularization
termsx and to test their performance on a variety of simulated
data for the EHT.

2.4. General Considerations for Dynamical Imaging

Before developing specific strategies for dynamical imaging,
it is instructive to consider how intrinsic variability can affect
image reconstructions that assume a static source. Each
baseline changes slowly with Earth’s rotation, so variability
of an image on much shorter timescales introduces variations in
measured visibilities over small baseline displacements Du.
From Equation (1), we see that variations in the visibility over
Du require that the image flux extends over an angular scale

pD ~ D( ∣ ∣)x u1 2 . This mathematical uncertainty relationship
arises because the variables of spatial position (x) and spatial
wavenumber (u) are Fourier conjugates. One consequence of
this property is that, for a static image, variations in the
complex visibility seen over a baseline displacement ofDu can
be used to infer the image field of view (FOV) without
requiring detailed imaging. Likewise, the image field of view
determines a maximum averaging time for visibilities sampled
from a static image (see Section 6.4 of Thompson et al. 2017).
However, for a variable source interpreted in the context of a
static image, rapid intrinsic variability implies the existence of
spurious image structure on large scales.

Figure 2. Top: baseline coverage for the EHT observing SgrA*. Baselines are
colored by Greenwich Sidereal Time (GST) to indicate the snapshot u–v
coverage at each time. Bottom: elevation of SgrA* as a function of GST for
each site, with a cutoff of 10°. Current EHT sites are the Atacama Large
Millimeter/submillimeter Array (ALMA), the Large Millimeter Telescope
(LMT), the Submillimeter Array (SMA), the Submillimeter Telescope (SMT),
the Institut de Radioastronomie Millimétrique (IRAM) telescope on Pico
Veleta (PV), the IRAM Plateau de Bure Interferometer (PdB), and the South
Pole Telescope (SPT). Note that PdB did not participate in 2017 EHT
observations.
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We now consider some specific examples. First, suppose that
variations in the visibility amplitude are seen on a timescale of
5minutes for an EHT baseline of length l5 G . In this case,

p l lD ~ ´ ´ »∣ ∣ ( ) ( ) ( ) ( )u 5 minutes 24 hr 2 5 G 110 M .
These variations would then imply an image extent of roughly

p mD »( ∣ ∣)u1 2 300 as. Note that this inferred extent is an
order of magnitude larger than the measured size of SgrA* at
l = 1.3 mm ( m»40 as; Doeleman et al. 2008). In addition, the
snapshot visibilities can be compared across the exceptionally
wide bandwidths of the EHT (4 GHz in 2017, and 18 GHz of
spanned bandwidth in 2018 via dual-sideband recording).
These also provide lD ~ ´ ~∣ ∣ ( ) ( ) ( )u 5 G 4 GHz 230 GHz

l100 M . Thus, visibilities that vary on timescales of minutes
but that are stable across the full EHT bandwidth would
provide firm evidence of rapid intrinsic variability.

As another trivial example, no static image can describe data
in which the total flux density (i.e., the zero-baseline visibility

( )V 0 ) is changing with time. The problems of imaging a
variable source are further exacerbated with multiple sites
because different baseline tracks can cross so that the same
spatial Fourier component is sampled at multiple times (see
Figure 2).7

As these examples illustrate, in some cases intrinsic
variability can be robustly decoupled from extrinsic sampling
variability (from a changing baseline with Earth’s rotation) by
constraining the image FOV (effectively imposing an image
prior). In Lu et al. (2016), the authors use temporal filtering and
normalization of measured visibilities to mitigate intrinsic
variability; their chosen filter parameters effectively impose a
maximal FOV. However, the strategy of post-processing
visibilities has some limitations relative to an image-based
approach; for instance, visibility-domain smoothing with a
baseline-based algorithm does not account for mismatched
visibilities on crossing baseline tracks. More generally,
visibility-domain averaging of robust observables such as
closure phases and closure amplitudes can introduce bias in the
measurements. Dynamical imaging addresses both these
limitations, providing a framework in which the intrinsic
variability is incorporated into the imaging model, so that
measurements can be directly compared with reconstructed
images without additional averaging.

3. Regularizers for Dynamical Imaging

We now derive three regularizers appropriate for dynamical
imaging. Our motivation is to identify regularizers that reflect a
range of expected properties for astrophysical cases of interest
and that also are efficient to implement in a numerical
minimization scheme. Our first regularizer only enforces
continuity from frame to frame (Section 3.1), the second
favors frames that are small perturbations from the time-
averaged image (Section 3.2), and the third describes an image
that evolves approximately as a fluid with a steady motion field
(Section 3.3). We summarize the properties of these regular-
izers in Section 3.4.

3.1. Smoothly Varying Images over Time

We first develop a generic regularizer that only seeks to
enforce continuity from frame to frame in reconstructed

images. Because the motion between frames is unknown and
may not be constant in time, this regularizer compares the
reconstructed flux density of a pixel at one time with the flux
density of nearby pixels at a subsequent time. The appropriate
definition of “nearby” depends on the product of the expected
velocity of moving features and the frame interval (which could
potentially be irregular). Because this strategy is based on
enforcing continuity over short time intervals, we denote the
regularizer by Dt.
Explicitly, we compute the summed difference among all

adjacent images after blurring the frames,  ( )I IBj j , using a
circular Gaussian kernel with standard deviation sDt. We will
focus on two particular choices to define the distance between a
pair of images. First, there is the total pixel-by-pixel squared
difference:

 å¢ º - ¢ = - ¢ ( ) ( ) ( )I I I I I I, . 4
m ℓ

m ℓ m ℓ2
2

,
, ,

2

A simple generalization of this regularizer is to replace the
squared norm ... 2 with ... p

p for some fixed  > p 0, p2 .
A second option to define an image distance is the relative

entropy (i.e., the Kullback–Leibler divergence):

 å¢ = ¢ º ¢
¢


⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )I I I ID I

I

I
, ln . 5

m ℓ
m ℓ

m ℓ

m ℓ
KL

,
,

,

,

The relative entropy is frequently used to regularize
traditional VLBI imaging against a specified image prior for
the reconstruction (see, e.g., Cornwell & Evans 1985) and is
also often used for multimodel image registration (Wells et al.
1996; Viola & Wells 1997). Note that the relative entropy is
not symmetric,  ¢ ¹ ¢( ) ( )I I I I, ,KL KL , and it need not be
positive unless the total flux densities of the two images
are equal: å = å ¢I Iℓ m ℓ m ℓ m ℓ m, , , , . Thus, useful alternatives
include computing the relative entropy with respect to the
normalized images (to preserve positivity of the divergence)
and symmetrized versions such as  ¢ + ¢[ ( ) ( )]I I I I, ,1

2 KL KL

or  + ¢[ ( ¯) ( ¯)]I I I I, ,1

2 KL KL with º + ¢¯ ( )I I I1

2
(i.e., the

Jensen–Shannon divergence).
The dynamical regularizer then takes the form

 åºD
=

-

+({ }) ( ( ) ( )) ( )I I IB B, . 6t k
j

N

j j
1

1

1

t

This regularizer thereby penalizes changes between frames,
with a steeply decreasing penalty for changes on scales
smaller than s~ Dt. One limitation of the Dt regularizer is
that it does not favor stable “momentum” of features between
frames. In Section 3.3, we will discuss an alternative
regularizer that favors reconstructions with smooth and stable
motion between frames. In its simplest implementation, this
regularization then depends on only two hyperparameters: sDt

and aDt (see Section 2.3). However, note that Dt is
meaningful even in the limit s D 0t (i.e., comparing the
total difference between adjacent frames with no blurring
applied). This limit is appropriate when the expected motion
between consecutive frames is smaller than the finest
resolution of reconstructed features (comparable to the
nominal array resolution).

7 For EHT observations of SgrA*, SPT-PV and SPT-SMT baselines are very
close in u–v space but have a 7.1 hr offset in sampling. Also, the ALMA-LMT
and ALMA-SMT tracks intersect with a time offset of 1.4 hr. See Figure 2.
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This regularization is effective in an imaging framework
because the gradient (with respect to changes in each pixel of
the { }Ik ) can be evaluated efficiently. For example, for the KL
distance function,


d d

¶
¶

= + -D

-
>

+
<

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

( )
( )

( )
( )

( )
I

I
I

I
I

B
B

B

B

B
1 ln , 7t

k

k

k
k

k

k
k N

1
1

1
t

where 1 denotes a vector of length N2 with every element equal
to unity and the indicator function dx is defined to be unity
when the subscripted condition x is satisfied and is zero
otherwise. Observe that calculating the gradient via
Equation (7) requires roughly  ´( )N Nt

2 computations,
while calculating the gradient via finite differences of
Equation (6) requires roughly  ´( )N Nt

4 computations.
Thus, for typically VLBI image reconstructions, which have

~ –N 10 102 3, these analytic gradients speed up the imaging by
several orders of magnitude.

Note that in Equation (7) and throughout this paper,
operations such as quotients, powers, norms (∣ ∣... ), and products
of image vectors are to be computed elementwise. See the
Appendix for corresponding expressions for other distance
metrics.

3.2. A Stable Average Image with Small Perturbations

Our next dynamical regularizer is suitable for the case when
each snapshot of the time-variable image can be described as a
small perturbation from the time-averaged image. This case is
applicable for a broad range of stationary processes, such as
steady-state accretion or jet systems. Because this regularizer
enforces snapshot images to be only small perturbations from
the time-averaged image, we denote it DI .

To proceed, we approximate the time-averaged image by the
average of all the reconstructed frames: º å =I I

N j
N

javg
1

1t

t . We

then define DI to be the summed distance between the
estimated time-averaged image and each reconstructed frame:

 å=D
=

({ }) ( ) ( )I I I, . 8I k
j

N

j
1

avg

t

As for Dt, a convenient property of this regularization is that
the gradient is efficient to compute (see the Appendix).

Note that this regularization requires only one tunable
hyperparameter, aDI , determining the overall strength of the
regularization. An additional blurring step could be added if
individual frames occasionally have flux density in regions that
are otherwise empty (e.g., to accommodate flaring behavior),
but the average image will tend to act like a blurring operator,
so we do not expect that this step will normally be needed.
Another difference between DI and Dt is that DI is
insensitive to abrupt changes between frames or even
reordering of frames. In this respect, DI is analogous to
entropy, which is unaffected by the placement of pixels in an
image (see Section 2.2).

3.3. Time-variable Images with Regular Motion

Our third regularizer is motivated by the case when an image
evolves according to a regular prescription for motion—i.e., a
steady flow of flux density over time. In this case, the
appearance at one time largely determines the appearance at

nearby times. A natural example of this case is an accretion
flow, and we will denote this regularization by flow.
To proceed, we consider the image ( )I x y t, , to be an

evolving “fluid” with a stable flow vector field ( )v x y, . We
further assume that the flux density is approximately conserved
between nearby frames, so the time-variable images must
approximately obey a continuity equation:

¶
¶

=-

=-  + 

( ) · [ ( ) ( )]

[ · · ] ( )

v

v v

I x y t

t
I x y t x y

I I

, ,
, , ,

, 9

where  = ¶ ¶ ¶ ¶{ }x y, denotes a 2D spatial gradient
operator. Hence, at a given time, the image and flow can be
combined to estimate the image at a slightly later time:

d d

d

+ » +
¶

¶
= - ´  + 

( ) ( ) ( )

( ) ( · · ) ( )v v

I x y t t I x y t t
I x y t

t
I x y t t I I

, , , ,
, ,

, , . 10

We can now use this approximate forward evolution to
regularize multiframe imaging. We consider a regularizerflow
that is given by the summed difference between each frame and
its predicted values based on linearized forward evolution of
the previous frame (via Equation (10)) with a discrete spatial
gradient operator replacing the continuous gradient. By only
comparing adjacent frames, we relax the assumption that the
flow field completely determines all forward evolution of a
system from an initial state—we only seek to favor series of
images that approximately respect a stable flow field over short
intervals. For specificity, we will work with the 2 regulariza-
tion, in which case
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Here, we have replaced the velocity field by a dimensionless
motion field d d=m v t x, where dx is the discrete grid
spacing of reconstructed images, dt is the image spacing in
time, and ∇now denotes a finite-difference operator that
approximates the continuous 2D gradient. We have also

defined the linear operator º -  - 
«

· ·F m m1flow , and
the second line is an approximation that only becomes exact
in the continuous limit because identities such as the product
rule do not hold exactly for the discrete gradient operator.8 In
this expression and elsewhere, images are treated as 1D
vectors, the 2D vector flow is unwrapped to be a 1D vector of
2D motions = { }m m m,i i x i y, , , and products of vectors (e.g.,
( · )m Ij) are to be computed by multiplying the vectors

8 For example, the 1D finite forward difference operator  º -+[ ]x x xi i if 1
satisfies  =  +  +  ( ) ( )( )xy y x x y x yf f f f f . Likewise, the analogous
finite backward difference operator  º - -[ ]x x xi i ib 1 satisfies  =( )xyb
 +  -  ( )( )y x x y x yb b b b . In the present work, we keep the gradient

operator general and assume smooth images with small fractional gradients so
that  »  + ( )xy y x x y.
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point by point (the Hadamard product). For the construction
of this regularizer to be valid (i.e., for the linear approx-
imation of Equation (10) to hold), the reconstructed frames
must have smooth spatial and temporal gradients; the former
is enforced by the image regularization terms ( )IS j , while the
latter is enforced by the dynamical regularization. More
concretely, the time resolution should be fine enough that
the vectors of the motion field do not exceed the nominal
VLBI beam that describes the angular resolution of the
reconstructed images (analogous to the Courant–Friedrichs–
Lewy condition for numerical integration of partial differ-
ential equations; Courant et al. 1967). Thus, observations
with finer angular resolution require correspondingly finer
temporal resolution. However, this condition does not require
observations that are spaced this closely in time; additional
frames can be included that do not have corresponding data
constraints (see Section 4).

The major difference between the flow regularizer and our
previous dynamical regularizers is that, in addition to
estimating all the image frames, this reconstruction strategy
must simultaneously estimate the flow vector field m. In the
Appendix, we provide analytic expressions for the gradients of
flow with respect to the images and flow, enabling efficient
estimation of both in a nonlinear minimization framework.

The motion field can also be regularized (just as the
individual frames are regularized) to ensure that it varies
smoothly over the image. Because m is a vector field, one
could potentially use the same regularizations as have been
proposed for polarimetric synthesis imaging (see, e.g., Chael
et al. 2016; Akiyama et al. 2017a). However, most of these
choices are insensitive to the polarization direction, with the
exception of total variation. We will use a closely related
choice, the total squared gradient of the velocity field:
 =  +    ( )m m mx ym

2 2. This regularizer is also com-
monly used in studies of optical flow, which reconstruct a
flow field from a series of images rather than from sparse
Fourier sampling (Horn & Schunck 1981).9 The gradient
of m with respect to the flow field is simply
¶ ¶ = -  · ( )m m2x y x ym , , . Also, m has an associated

hyperparameter am to govern its overall weight.
Alternatively, in some cases the flow may be known or may

be adequately modeled with a small number of parameters (see,
e.g., Bouman et al. 2017). In these cases, dynamical imaging is
plausible for much sparser arrays. At the other extreme, with
sufficient data, the assumption of a stationary flow can be
relaxed and the dynamical imaging could allow a smoothly
evolving flow field over time.

3.4. Summary and Asymptotic Properties of
Dynamical Regularizers

We have developed three regularizers that are suitable for
dynamical imaging:  D D,t I , and flow. Dt favors con-
tinuity from frame to frame within a spatial displacement
tolerance determined by sD D,t I favors frames that are small
perturbations from the time-averaged image, and flow favors
frames that evolve approximately according to a time-
independent flow vector field, m (see Figure 3 for a schematic
comparison of these strategies). Each regularizer requires one

associated hyperparameter, ax, that assigns overall weight to
the dynamical regularization. Dt also requires one parameter
describing the expected angular motion of features from frame
to frame, and flow requires a hyperparameter am to regularize
the estimated flow field. DI requires no additional hyperpara-
meters. These hyperparameters can be fixed according to
a priori expectations, they can be treated as Lagrange
multipliers and varied to give properties such as a final reduced
chi-squared of unity, or they can be estimated using cross-
validation (Akiyama et al. 2017b). As a  0x , each regular-
ization strategy is equivalent to independently imaging a series
of frames. Taking a  ¥Dt or a  ¥DI would enforce a
static reconstructed image, equivalent to conventional imaging,
although this is not necessarily true for a  ¥flow .
It is also possible to normalize each regularizer such that its

value is unaffected by the choice of temporal (Dt; the frame
spacing) and spatial resolution (Dx; the pixel linear dimension)
of the reconstruction. As these become arbitrarily small, the
dynamical reconstruction approaches a continuous representa-
tion in time and space. In particular, the limit D t 0 is
relevant when including interpolating frames (see Section 4),
which enable arbitrary temporal resolution. The required
normalization factor depends on the chosen distance metric.
For the p distance, each regularizer x must be multiplied by
D D- - - -( ) ( )x tp p2 1 1 . For the Kullback–Leibler divergence KL
and its symmetrized variants, the normalization factor is D -t 1.
After applying this factor, the associated hyperparameters ax
will be unaffected by the choice of temporal or angular
resolution, assuming that the motion in each is well resolved.

4. Dynamical Imaging and Interpolation

Dynamical imaging also serves as a framework for temporal
interpolation of images. Namely, image frames can be added,
even at times when there are no corresponding data. Without
dynamical regularization, these additional frames would default
to the image that maximizes the entropy (typically an image
with constant brightness, possibly uniformly zero). However,
dynamical imaging will favor frames that respect the chosen
regularizer. For example, when using Dt, the additional
frames will converge toward images that enforce continuity of
features with the nearest data-constrained frames. For DI ,
frames without data will default to the estimated time-averaged
image. For flow, unconstrained frames will interpolate
according to the derived flow map. In each case, frames with
missing data can inherit partial information from other times.
Moreover, for the case of flow, frames can be intentionally
spaced at finer resolution than the sampling time to ensure that
the linear approximation of Equation (10) is accurate. All these
strategies will produce different results than a straightforward
linear interpolation between images, as is commonly used to
visualize multiepoch VLBI studies (e.g., Lister et al. 2016).
However, we have found that the interpolated frames can

sometimes have a different appearance than data-constrained
frames. For instance, when using the Dt regularization with
s >D 0t , the interpolated frames are “blurred out” relative to
the data-constrained frames. This blurring is unsurprising, as it
helps to minimize the mean squared difference among adjacent
frames as elements of flux move in time. Consequently, the
interpolated frames may achieve continuity of features but may
have temporal discontinuities in the total flux density or image
entropy.

9 Another difference between traditional studies of optical flow and our
approach is that the former assume an incompressible flow:  º· m 0.
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To mitigate the artifacts in interpolated frames, we can
directly enforce continuity of quantities such as flux density
and entropy. To do so, we add corresponding terms to the

objective function (Equation (3)). For example, to enforce
continuity of image entropy, one can add

 åº -D
=

-

+[ ( ) ( )] ( )I IS S , 12S
j

N

j j
1

1

1
2

t

weighted by an associated hyperparameter aDS. The hyper-
parameter can be adjusted so that this term allows continuous
variations of the entropy among frames without forcing the
entropy of each frame to be equal. The gradient of this term is
straightforward to compute in terms of the single-image
gradients:
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Likewise, to make the total flux continuous from frame to
frame, we can add
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weighted by an associated hyperparameter aDF , where
º å( )IF Iℓ m ℓ m, , denotes the total flux density of an image.

The gradient is again straightforward to compute:
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where ¶ ¶( )I IF k k is a vector with each element equal to 1 and
of length equal to the number of pixels in image Ik .

5. Examples of Dynamical Imaging

We will now show a few representative examples of
dynamical imaging using simulated VLBI observations, and
we will discuss general trends that we have identified. We
conclude this section with an example showing frames from
dynamical imaging of M87.

5.1. Implementation and Procedure

We implemented the dynamical regularizers developed in
Section 3 as an extension to the eht-imaging10 Python
library, which was originally developed for polarimetric VLBI
imaging (Chael et al. 2016). This library provides a modular
and flexible imaging framework that can utilize a variety of
imaging regularizers (e.g., entropy, total variation, and ℓp) and
arbitrary combinations of data constraints (e.g., complex
visibilities, the bispectrum, or closure quantities). We also
used this library for generating synthetic data. Except when
noted otherwise, we chose observing parameters that corre-
spond to the 2017 EHT: an observing bandwidth of 4 GHz and
site system equivalent flux densities given in Table 1. For
simplicity, our simulated observations of SgrA* account for
sensitivity losses from the blurring effects of interstellar
scattering (Fish et al. 2014) but not irregular, refractive effects
(Johnson & Gwinn 2015).

Figure 3. Schematic comparison of our proposed imaging methods. In
conventional imaging, a single image is reconstructed from an observation. In
snapshot imaging, a set of images is reconstructed from a corresponding set of
observations, and each reconstruction is performed independently. For dynamical
imaging with Dt regularization, the images are assumed to be temporally
connected, each being a small perturbation of the previous frame. WithDI , each
frame is assumed to be a small perturbation of the time-averaged reconstructed
frames, and image order is irrelevant. Forflow, each image is a small perturbation
of the previous image after forward evolution with the stationary flow, which must
be reconstructed along with the images. For the dynamical reconstructions, images
can be meaningfully reconstructed even at times with no corresponding observation
(see Section 4). See Bouman et al. (2017) for a discussion relating these schematic
diagrams to a probabilistic graphical model for the dynamical imaging problem.

10 https://github.com/achael/eht-imaging
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The fundamental interferometric data product is the sampled
complex interferometric visibility (Equation (1)). However,
because of a large stochastic contribution from the atmosphere
to each site’s phase, high-frequency VLBI arrays can typically
only measure quantities such as closure phase robustly
(Thompson et al. 2017). Imaging algorithms can then work
with these robust data products directly (see, e.g., Buscher
1994; Baron et al. 2010; Bouman et al. 2016; Chael et al. 2016;
Akiyama et al. 2017b). Nevertheless, in the near future,
improved techniques such as simultaneous subarrayed observa-
tions of calibrators (see Broderick et al. 2011) may provide
absolute phase information. Also, we expect dynamical
imaging to be applicable at the lower frequencies where phase
referencing is routine; e.g., observations with the VLBA at
wavelengths of 3 mm and longer. Thus, we will show results
both when using complex visibilities and when using only
visibility amplitudes and closure phase.

To minimize the objective function given by Equation (3)
(i.e., to perform dynamical imaging), we used the nonlinear
minimization package optimize.minimize of SciPy
(Jones et al. 2001). We used the Limited-Memory BFGS
algorithm (Byrd et al. 1995) except when memory require-
ments to store the partial Hessian became prohibitive (generally
when imaging100 frames simultaneously), in which case we
instead used the conjugate gradient algorithm implemented in
SciPy (which does not compute the Hessian).

Similar to conventional VLBI imaging, convergence to the
minimum of the objective function for dynamical imaging can
be challenging because of the extremely high-dimensional
( ´N N 102

t
6) parameter space surveyed. Convergence is

especially challenging when using only robust VLBI obser-
vables, such as closure phases, rather than complex visibilities
because the relative image centroid among frames is only
constrained by the dynamical regularization. Consequently, we
used a number of strategies to assist convergence, most
involving multiple iterations of minimization with modified
initial values. One particularly effective strategy for avoiding
local minima, following Chael et al. (2016), is to repeatedly
image the data, re-initializing the minimization each time to be
equal to the previous reconstructed images convolved with the
nominal VLBI array resolution. In cases with many high-
quality data points for each snapshot, we iterated between
imaging all frames and allowing convergence to proceed on
individual frames independently. For DI , we repeatedly

re-initialized all frames to the current average image. For
flow, we repeatedly re-initialized the flow to be uniformly
zero. In all cases, we determined the dynamical imaging
hyperparameters ax by making them as large as possible while
still achieving a final reduced c2 near unity.
One modification to the prescription outlined above that we

did find to be effective for larger arrays, such as the VLBA,
was to apply the dynamical regularizers to the logarithm of the
reconstructed images rather than to the images when using the
2 or p distance function (here, we assume image positivity).
This change helps the dynamical regularization to improve
time-variable imaging of faint image features and significantly
improved reconstructed images with dynamic range 100,
although it is unnecessary when using the relative entropy
distance function KL.
To assess the fidelity of reconstructed images when the true

(model) image is known, we utilize the (normalized) mean
squared error (MSE):

å åº - ¢
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Here, Iℓ m, is the model image and ¢Iℓ m, is the reconstructed
image. In cases where closure phases are used for image
reconstructions, the image centroid is unconstrained and we
report the MSE that is minimum over all shifts D D{ }ℓ m, . The
precise value of the MSE should not be taken too literally
because it is sensitive to sharp features in the original image
that the array cannot resolve (see also Gomes et al. 2017).
Nevertheless, the MSE does tend to provide a crude
characterization of reconstructed image quality.

5.2. Dynamical Imaging of a Steady Accretion Flow

To examine the potential capabilities of dynamical imaging
with EHT data, we generated synthetic data from a face-on
view of a 3D GRMHD simulation of an accretion flow onto
SgrA* (b0-high from Shiokawa 2013). Figure 4 shows
image reconstructions using both snapshot imaging (see
Figure 3) and dynamical imaging. These reconstructions use
the DI regularizer with the 2 distance metric and complex
visibilities for the data product; we reconstructed 99 frames,
each »t24 530 sG , for a total duration of 14.6 hr. At times with
poor u–v coverage, the snapshot images are uninformative
while frames from dynamical imaging are close to the
estimated time-averaged image. Dynamical imaging success-
fully identifies the time-variable regions of enhanced flux
density and can also identify the flow direction, which is not
apparent in the snapshot reconstructions.
To quantify the improvement of dynamical imaging relative

to snapshot imaging, Figure 5 shows the MSE as a function of
time for these two reconstructions. Notably, the MSE for
snapshot imaging changes significantly over the observation,
increasing steeply when the number of sites with mutual
visibility of SgrA* drops. In contrast, the MSE for dynamical
imaging is lower overall and is steady, showing the increased
resilience to limited data.

5.3. Estimates of Time-averaged Images

Another important utility of dynamical imaging is to
estimate the time-averaged image over an observation. For

Table 1
Assumed Site System Equivalent Flux Densities (SEFD)

Site SEFD (Jy)

SMA/JCMT 4900
SMT 11900
LMT 560
ALMA/APEX 220
SPT 1600
PdB 1600
PV 2900

CA 10000
KP 10000

Note. Most SEFDs match what was specified in the 2016 EHT call for
proposals. CA and KP are as-yet-hypothetical EHT sites at the location of the
CARMA array and at Kitt Peak, respectively.
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studies of SgrA* with the EHT, the time-averaged image is of
intense interest because it may reveal distinctive features of the
spacetime near a black hole such as the black hole “shadow”
(Bardeen et al. 1972; Luminet 1979; Falcke et al. 2000;
Takahashi 2004; Johannsen & Psaltis 2010). Yet, as discussed
in Section 2.4, imaging techniques that assume a static source
can be severely affected by intrinsic source variability;
conventional imaging will not simply provide an estimate of
the time-averaged image. Instead, the variability must be
integrated into the imaging procedure by either preprocessing
the data to render it compatible with a static-source assumption
(Lu et al. 2016) or modifying the imaging procedure to
accommodate image variability, as we propose here.

To test this application of dynamical imaging, we used the
simulated EHT data from Lu et al. (2016) for a GRMHD
simulation of an accretion flow onto SgrA*. Note that, in
contrast with our other examples, this data set included the
CARMA array (the CARMA observatory was shut down in
2015), it sampled the images with 16 GHz of bandwidth rather
than 4 GHz, and it used slightly different SEFDs than are given

in Table 1. Because the frame spacing is rather large in this
example (3.7 minutes), we again used the regularizer DI with
the 2 distance metric.
Figure 6 compares the time-averaged estimates from

dynamical imaging with the time-averaged simulated image.
The estimated average image is comparable in quality to the
image obtained with the scaling, averaging, and smoothing
approach of Lu et al. (2016). We also found that averaging the
snapshot images gives an estimated average image with
comparable quality to these more sophisticated approaches,
especially if periods with poor u–v coverage were down-
weighted or omitted. Thus, a weighted average of snapshot
images, favoring times with superior u–v coverage, may also
produce reliable estimates of the time-averaged image and will
provide a useful comparison for these other approaches.

5.4. Dynamical Imaging of Flares

Another important application for dynamical imaging is to
study flares of SgrA* via direct imaging. Figures 7 and 8
show example reconstructions for an orbiting “hot spot” near

Figure 4. Example reconstruction of a face-on accretion disk with and without dynamical regularization. The full reconstruction comprised 100 frames of 8.8minutes
each beginning at 16:00GST and spanning a total of 14.6 hr. The simulated images are from a 3D GRMHD simulation (b0-high from Shiokawa 2013). The above
panels show the simulated images, snapshot reconstructions (using conventional maximum entropy imaging with only the instantaneous u–v coverage), dynamical
reconstructions (usingDI ), and the baseline coverage at three times. The color scale is linear and is consistent among different times but is scaled separately for each
case based on the maximum brightness over all frames. Because the early and late frames have few data constraints, the snapshot image reconstructions of those
frames are almost entirely uninformative and poorly approximate the true images. In contrast, the dynamical imaging reconstructions at those times appear almost
identical, with the data only supporting small perturbations from the estimated time-averaged image.
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SgrA* (Broderick & Loeb 2006), using simulated observa-
tions that span only 27 minutes. For these examples, we used
Dt regularization with the symmetrized KL divergence as
the distance metric. While this simulated observation is too
short to build up significant baseline coverage via Earth
rotation to estimate an accurate time-averaged image, the
reconstructions successfully identify the motion of the hot
spot, especially if additional sites at Kitt Peak and CARMA
are included. Thus, in the coming years, the EHT may be able
to trace rapidly evolving structures and estimate orbital
rotation curves from dynamical imaging, especially if the
array continues to expand.

5.5. Comparison of Dynamical Imaging Methods

We next compare all three dynamical imaging strategies on
simulated observations of an accretion flow viewed at an
inclination of 30° with respect to the black hole’s rotation axis.
Apart from the viewing inclination, the simulation is identical
to the one shown in Figure 4. We used 1400 simulated movie
frames, corresponding to 4.3 hr of observations, starting at a
GST of 23:00. To simplify the comparison between the three

imaging methods and avoid discrepancies from poor conv-
ergence or image misalignment, we used full complex
visibilities for dynamical imaging and the 2 distance metric
for each. Each reconstructed movie has 234 frames (1/6 the
time resolution of the input movie).
Figure 9 compares the average image of the simulation with

the averaged images from the three dynamical imaging
reconstructions using the 2017 EHT configuration (for the
reconstruction using flow regularization, the reconstructed
motion field is also shown). Figure 10 performs the same
comparison for reconstructions that also included sites at Kitt
Peak and at the location of the CARMA array. Figure 11 shows
the MSE over time for each reconstruction from both array
configurations. Despite their differing assumptions about the
underlying image variability, the three methods give results that
are broadly consistent. With the additional EHT sites of the
second example, the flow clearly identifies the correct direction
of motion, although the estimated magnitude of the motion
underestimates by a factor of several the estimated time-
averaged optical flow of the simulated images (Liu 2009).
Thus, to recover precise details about the motion will likely
require either more stringent dynamical imaging constraints
(see, e.g., Bouman et al. 2017) or additional sites added to
the EHT.

5.6. Dynamical Imaging of M87

As a final example, we used dynamical imaging on a series
of 14 separate 43 GHz VLBA observations of M87 taken over
a span of 70 days in 2008 as part of the M87 Movie Project
(Walker et al. 2016; R. C. Walker et al. 2017, in preparation).
We reconstructed a series of 24 images spaced by 3 days; each
observation was associated with the nearest image in time, and
the remaining images had no data constraints (see Section 4).
We used Dt regularization with symmetrized Kullback–
Leibler divergence as the distance metric and s =D 0t (see
Section 3.1). We have found that this overall strategy works
well for images with high dynamic range and irregular motion,
without requiring fine-tuning of the imaging parameters. We
also utilized iterative self-calibration, so that the dynamical
imaging serves as both an imaging and calibration framework.
While detailed analysis of these results will be presented

separately, Figure 12 shows four of the reconstructed frames
with their corresponding static reconstructions over a short time
interval (17 days). Even a moderately relativistic component,
with an apparent transverse velocity of c2 , would move by only
0.36 mas over this entire interval. Dynamical imaging
successfully finds a series of similar images, each of which is
consistent with its respective, self-calibrated data. By eliminat-
ing faint spurious features, outward motion along the jet is
more readily evident in the dynamical reconstructions. More-
over, this interval includes one epoch ( =MJD 54554) for
which the original data were adversely affected by poor
weather and were not considered to be of adequate quality for
inclusion in the final CLEAN data set. Nevertheless, dynamical
imaging is able to successfully link this period of inferior data
to the higher-quality nearby epochs so that the reconstructed
image is not perceptibly degraded.

6. Summary

In summary, we have developed three regularizers that are
suitable for dynamical imaging:  D D,t I , and flow. Dt

Figure 5. MSE as a function of time for all frames of the reconstruction shown
in Figure 4 when compared with the simultaneous simulated frames. As
expected, the snapshot reconstructions vary erratically, with the most abrupt
changes occurring when SgrA* rises or sets at a participating site (here, we use
an elevation limit of 15°; see Figure 2). In contrast, the MSEs of
reconstructions with dynamical imaging are relatively steady, demonstrating
the added resilience of snapshot reconstructions when using all data
concurrently. Nevertheless, with this sparse array, most of the improvement
in MSE comes from the superior estimate of the time-averaged image rather
than from precisely tracking the changing features of the image.

Figure 6. Comparing the time-averaged image of a simulated accretion flow
(left) to three reconstruction strategies: standard VLBI imaging that assumes a
static source (left-center), time-averaged snapshot image reconstructions (right-
center), and time-averaged dynamical imaging with DI regularization (right).
For the standard and snapshot imaging, we used maximum entropy imaging. In
this example, we matched the simulation and observing parameters given in Lu
et al. (2016) (here, a single 12 hr observation). As expected, conventional
VLBI imaging works poorly, but both averaged snapshot imaging and
dynamical imaging are comparable in quality to scaling, averaging, and
smoothing the interferometric visibilities before static imaging ( =MSE 0.14;
Lu et al. 2016). Here and throughout this paper, the color scale is linear.
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favors continuity from frame to frame, DI favors frames that
are small perturbations from the time-averaged image, and
flow favors frames that approximately evolve according to a
stationary flow. For each of these regularizers, we have derived
analytic gradients with respect to the unknown image

parameters, so each converges quickly with modest computa-
tional resources (e.g., all the reconstructions in this paper were
performed on a personal computer). Each can be used with any
choice of VLBI data product (e.g., complex visibilities, the
bispectrum, or visibility amplitudes and closure phases) and

Figure 7. Example dynamical reconstruction of a simulated flare. This simulation is a “hot spot” orbiting SgrA* with a period of 27 minutes (model B of Doeleman
et al. 2009b). The total observation covers one full orbit of the hot spot. Top panels show six selected frames of the simulated images, middle panels show
corresponding reconstructions with the 2017 EHT array, and bottom panels show reconstructions with the 2017 EHT array plus sites at the location of the CARMA
array and at Kitt Peak, each with an assumed SEFD of 10,000 Jy. These reconstructions used Dt regularization and complex visibilities with only thermal noise
added. The spurious structure to the southwest in each reconstruction reflects the significantly anisotropic beam, which contains almost no power at this location
during the simulated GST range because of a void in the u–v coverage at the corresponding (orthogonal) position angles (see Figure 2).

Figure 8. Same as Figure 7, but using only visibility amplitudes and closure phases for the reconstructed images.

11

The Astrophysical Journal, 850:172 (15pp), 2017 December 1 Johnson et al.



any choice or combination of image regularization for
individual frames (e.g., entropy, ℓn-norm, or total variation).

For dynamical imaging, the most significant challenge we
have encountered is suitable convergence to the optimal
reconstruction, especially when using a small array and only
VLBI closure quantities. We have discussed a number of
strategies to assist convergence, most involving iterative re-
imaging with blurring, averaging, individual frame imaging, or

other modifications at each stage. In Bouman et al. (2017), we
develop an alternative approach to dynamical imaging that
provides an analytic expression for the reconstructed images,
lessening the problem of convergence, at the expense of
restrictive constraints on the dynamical imaging framework.
These methods can potentially be used in sequence to allow a
flexible dynamical imaging strategy with reliable convergence.
A major motivation for this work is the possibility of

imaging SgrA* with the EHT. Even in its simplest
implementation, dynamical imaging provides a framework to
estimate the time-averaged image of SgrA* and will be
significantly more sensitive than static imaging approaches if
there is significant intrinsic variability (see Figure 6).
Dynamical imaging can also confirm key image features such
as the black hole shadow based on their temporal signatures.
For example, the region surrounding the shadow is expected to
exhibit enhanced high-frequency variability (Shiokawa et al.
2017). Dynamical studies of SgrA* will be crucial for
estimating accretion disk inclinations, breaking a degeneracy
in time-averaged images from the near symmetry orthogonal to
the rotation axis (see, e.g., Broderick et al. 2011; Johnson et al.
2015a), and they will also be helpful for estimating the black
hole spin. Namely, while the shape of the black hole shadow is
almost independent of spin (Bardeen et al. 1972; Takahashi
2004; Johannsen & Psaltis 2010), orbital periods at the
innermost stable circular orbit vary by nearly a factor of 10
depending on spin (Bardeen 1973).
For EHT imaging, DI regularization appears especially

promising because inhomogeneous data can be combined
regardless of their spacing, specific observing cadence, or
participating telescopes. Thus, any robust data products from
multiple epochs can be merged to produce an average image

Figure 9. Comparison of dynamical imaging methods for an accretion flow viewed at 30° off the rotation axis. The left two panels show the average simulated image
and the average simulated image blurred with half the nominal observing array beam (the full beam is m m´26 as 16 as, with the major axis at a position angle of 73°
east of north). The remaining panels show the average reconstructed image after dynamical imaging with  D D,t I , and flow regularization, respectively. The flow
field that was derived when usingflow regularization is overplotted on the final image; flow vectors (scaled in length by a factor of 5) show the derived motion from
frame to frame (i.e., over an interval of 67 s). As this example illustrates, EHT coverage in 2017–2018 is unlikely to be sufficient to derive a reliable flow field without
additional constraints on the flow structure. Nevertheless, the reconstructed images with flow are broadly consistent with the other methods.

Figure 10. Same as Figure 9, but using the 2017 EHT array plus sites at the location of the CARMA array and at Kitt Peak. In this figure, the derived motion field
vectors are scaled by a factor of 10. While the two additional sites hardly change the observing beam (the blurred image is nearly identical to Figure 9), they
significantly improve the snapshot baseline coverage and the dynamical imaging.

Figure 11. MSE vs. time for the dynamical imaging reconstructions shown in
Figures 9 and 10. Upper, thick lines show results for the 2017 EHT
configuration; lower, thin lines include sites at the location of the CARMA
array and at Kitt Peak. At early times, when the baseline coverage is minimal,
DI regularization provides the best results, showing the improvement that can
be obtained under the assumption of a stable average image. At later times,Dt

is as good, or slightly advantageous, showing the benefit when enforcing
temporal continuity on reconstructed images. With the expanded EHT array
configuration, all methods produce accurate and comparable results.
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that is not adversely affected by the variability, while also
estimating the time-dependent perturbations. Moreover, our
approach can be combined with other regularization frame-
works, for instance, to simultaneously mitigate the effects of
interstellar scattering (Johnson 2016). Looking forward,
dynamical imaging may be a rich source of continued study
of SgrA* as millimeter VLBI continues to expand, potentially
even to Earth-space baselines (see, e.g., Wild et al. 2009;
Smirnov et al. 2012; Kardashev et al. 2014).

Our framework is also suitable for multiepoch VLBI imaging
studies, including kinematical studies of relativistic jets (e.g.,
Kellermann et al. 2004; Jorstad et al. 2005; Lister et al. 2009,
2016; Mertens & Lobanov 2016; Walker et al. 2016), supernovae
(e.g., Bartel et al. 2000; Bietenholz et al. 2003; Bartel 2009), and
microquasars (e.g., Fomalont et al. 2001; Mioduszewski et al.
2004; Jeffrey et al. 2016). It can also be applied to multiepoch
wide-field imaging, where highly sensitive instruments such
as the Square Kilometer Array (SKA) are expected to detect a
combination of static and variable sources (e.g., Fender et al.
2015; Metzger et al. 2015). For cases with regular motion,
dynamical imaging with flow can self-consistently estimate the
velocity field, while cases with irregular motion should be imaged
with softer regularization, such as D D,I t (see Figure 12), or a
nonstationary flow. A benefit of our approach is that epochs with
poor u–v coverage or sensitivity can partially inherit the higher
resolution of neighboring epochs—our approach does not assume
a constant VLBI beam among the epochs or even a constant
spacing between epochs (see, e.g., Figure 5). Our approach can
also incorporate iterative self-calibration to derive a calibrat-
ion solution that is compatible with smooth structural evolution

among epochs. And while our focus has been on dynamical
imaging of the total flux density, our methods are straightforward
to adapt to full-Stokes polarization, which often shows more
pronounced variability than the total flux density (e.g., Gabuzda
et al. 2000).
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Figure 12. Comparison of static imaging (top) and dynamical imaging (middle, bottom) of M87 for four closely spaced epochs over a span of 17 days. The static
images were reconstructed using CLEAN (for details, see Walker et al. 2016; R. C. Walker et al. 2017, in preparation); the dynamical images were reconstructed using
Dt regularization with symmetrized Kullback–Leibler divergence as the distance metric. The restoring beam of the CLEAN images varies from epoch to epoch but is
typically m~ ´430 200 as at a position angle of −13°. To simplify comparisons, the dynamical images in the middle row have been convolved with the
corresponding CLEAN beam. To highlight evolution of compact structure, the dynamical images in the bottom row have been convolved with a circular Gaussian
beam with FWHM of m150 as. At the resolution of the CLEAN beam, static imaging and dynamical imaging are broadly consistent, but faint features are more similar
from frame to frame in the dynamical reconstruction, more readily identifying physical evolution. Contours in all panels are at equal levels, starting at 10.5 mJy mas2

(=1 mJy beam in the first CLEAN image) and increasing by factors of 2.
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Appendix
Gradients of Dynamical Regularization Terms

We will now derive analytic expressions for the gradients of
the dynamical regularization terms. These gradients depend on
the chosen distance function, and so we will provide
representative examples.

A.1. Gradients of Dt

The gradient of Dt when using the 2 distance function is
given by


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where B2 denotes a blurring operator that is applied twice, and
the indicator function dx is defined to be unity when the
subscripted condition x is satisfied and is zero otherwise. Note

that B could be replaced by any ´N N2 2 matrix operator
«
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(acting on an image vector), in which case B2 in Equation (17)
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Lastly, for the KL distance function,
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where 1 denotes a vector of length N2 with every element equal
to unity. Gradients for variants of the KL function can be
computed similarly. We again emphasize that operations such
as norms (∣ ∣... ), quotients, powers, and products of image
vectors are to be computed elementwise.

A.2. Gradients of DI

For the DI regularization function, using the 2 distance
function gives the following gradient:
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Note that the second term is independent of k and is zero
for p=2.

Lastly, for the KL distance function, we find
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A.3. Gradients of flow

For flow regularization, we must evaluate the gradients of
flow with respect to both the images and the flow. The
gradient with respect to the images can be written in a general

form that only depends on the linear operator
«
Fflow and its

transpose. For instance, using the 2 distance metric gives
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Using the identity that  = - (appropriate for central finite-
difference operators), we obtain

 = -  + ( · ) ( · · )m m m . The other elements of
«
Fflow

are diagonal matrices, so
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Substituting this result into Equation (23), we obtain
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Likewise, the gradient with respect to the flow vector field m is
given by
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